CLEANATLANTIC CONFERENCE

Vigo, 21st June

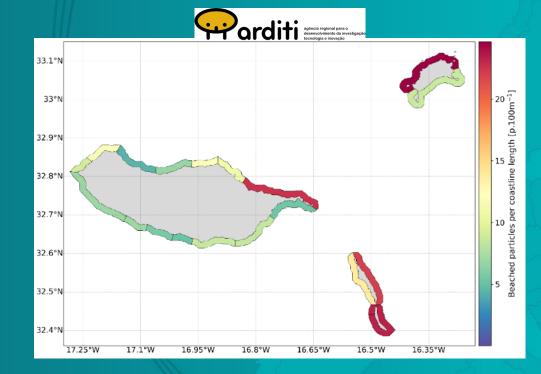
09.00 – 16.30 h (UTC+2h00, Madrid, Bruselas)

Study on fishing gear life cycle in Madeira, Portugal

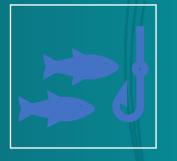
Pedro Sepúlveda & Nicola Pestana

Secretaria Regional **de Ambiente, Recursos Naturais e Alterações Climáticas** Direção Regional do Ambiente e Alterações Climáticas

- Madeira Archipelago Northeast Atlantic
- Increase of marine plastic pollution poses an unprecedented risk to oceanic islands
- High motivation to prevent marine litter, to reduce it and minimize its impact on the degradation of ecosystems and loss of biodiversity
- How, when a certain amount of items collected are from other regions?



- Scientific studies shown accumulation sites:
 - Remote and inacessible areas
- Specific clean-up campaigns:
 - 1 event
 - 20 man/hour
 - 600 Kg
 - 30 cubic meters
 - 90% shipping or fishing



Single Use Plastics Directive:

- Ambitious measures to reduce plastic waste
- Increase collection
- Increase recycling

- Insufficient incentives to return these fishing gears to the coast for collection and treatment

- Plastic components of fishing gear have a high potential for recycling

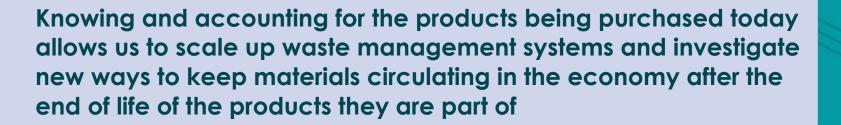
- Member States will have to establish by 31st December 2024 Extended Producer Responsibility (EPR) schemes for fishing gear and components of fishing gear containing plastic

EU Single-use Plastic Directive

What will be banned by 2021?

Accounting for the consumption of products and the production of waste makes it possible to define more efficient strategies in economic and environmental terms for their management 12 RESPONSIBLE CONSUMPTION AND PRODUCTION

Waste hierarchy


PREPARING FOR RE-USI

RECYCLING

RECOVERY

Knowing and accounting the waste being produced allows the assessment of possible destinations, avoiding landfilling

To minimize the potential impact of fishing gear on marine ecosystems, it is necessary to implement public policies, which requires evaluating:

- Quantities involved
- Their origins (activity source, geographical source)
- Potential end of life destinations

rchibido sacar

How much is produced locally?

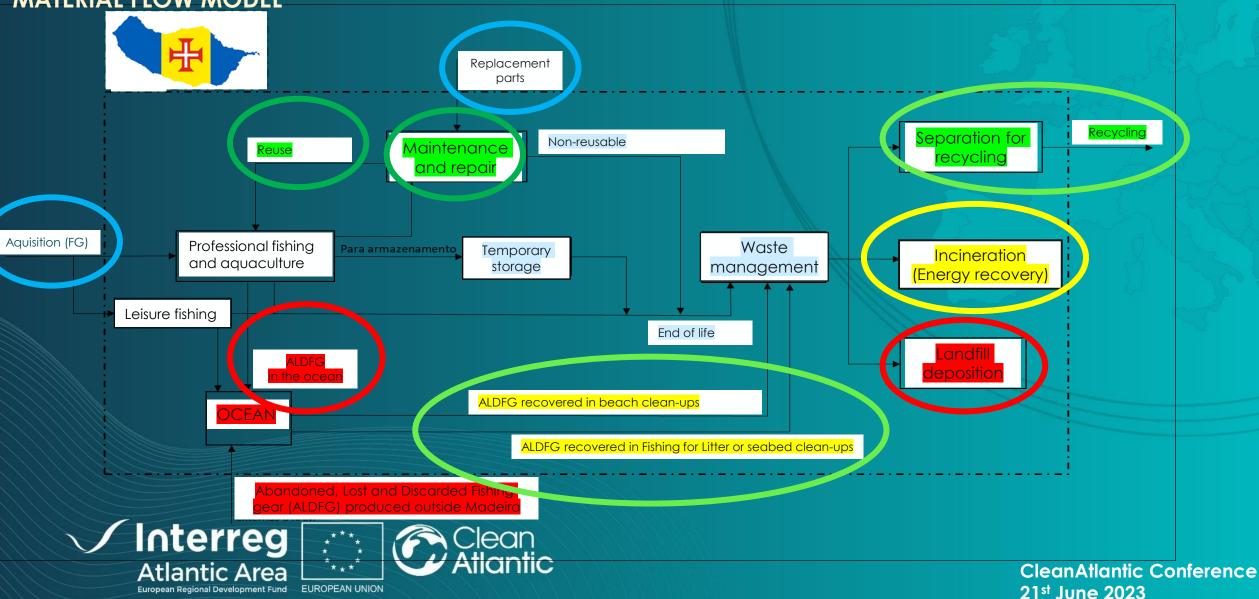
- Evaluate the flow of fishing gear materials in Madeira
 - Professional fishing and aquaculture (2021)
 - Coastal leisure fishing (2022)
 - Identifying quantities
 - Types
 - Origins and end of life destinations
- Produce recommendations relating to the management of fishing gear, regarding prevention and management of the waste produced

 Contribute to the development of a more sustainable and circular model for fishing gear in Madeira

Tackling Marine Litter in the Atlantic Area

Characterisation of the fishing gear materials flows in the Autonomous Region of Madeira

WP 7: Monitoring and data management WP 7.3: Reducing abandoned lost and otherwise discarded fishing gears (ALDFG).



Secretaria Regional de Ambiente, Recursos Naturais e Alterações Climáticas Direção Regional do Ambiente e Alterações Climáticas

MATERIAL FLOW MODEL

• FISHERIES

→ What type of fisheries? → Fishing gear composition?

Type of fishery		Equipment	Composition	
	LLD	Snoods	Polyamide (Nylon), Polyethylene	
		Streamer Lines	Nylon	
	(drifting longline)	Hooks	Steel	
		Buoys	Polyethylene, Polyurethane, Expanded Polystyrene	
			(filler)	
	LLS	Snoods	Nylon, Polyethylene	
		Streamer Lines	Nylon	
	(depth Iongline)	Hooks	Steel	
Angling		Buoys	Polyethylene, Polyurethane, Expanded Polystyrene	
			(filler)	
	LHP (Leap and Pole)	Lines	Nylon	
		Hooks	Steel	
		Buoys	Polyethylene, Polyurethane, Expanded Polystyrene	
			(filler)	
	LHP	Lines	Nylon	
		Hooks	Steel	
	(Hand Line	Pueve	Polyethylene, Polyurethane, Expanded Polystyrene	
	Cane)	Buoys	(filler)	
Seine (encircling)		Nets	Nylon	
		Ropes	Polyethylene, Polypropylene	
		Buoys	Polyethylene, Polyurethane, Expanded Polystyrene	
			(filler)	

• FISHERIES

→ What type of fisheries?
→ Fishing gear composition?
→ Size of fishing fleet?

t Fund EUROPEAN UNION

Type of fishery		Size	Fleet number per size	Total fleet per fishery	
	LLD	I	56		
	(drifting longline)	II	25	88	
			4	00	
		IV	3		
	LLS (depth Iongline)		50		
		II	12	64	
			2		
Angling	LHP (leap and pole)		35		
		П	9	50	
			3	52	
		IV	5		
		I	63	<i></i>	
	LHP (hand	II	17		
	line cane)		3	86	
	,	IV	3		
		I	1		
Seine (e	Seine (encircling)		1	5	
			3		

• FISHERIES

- → What type of fisheries?
- → Fishing gear composition?
- → Size of fishing fleet?
- → Statistic analysis of median gear used per type of fisheries

Type of fishery		Ship size	Average number of appliances * per vessel	Average length of the snoods (m)	Average number of monofilament per snoods	Average length of monofilament (m)
	LLD	1	10	4000	90	500
(drit		Ш	20	8000	90	500
	(drifting	Ш	35	8000	90	500
Longline	longline)	IV	40	16000	90	500
	LLS	I	1	3000	120	25
	(depth	Ш	1	6000	250	25
	longline)	III	2	10000	400	25
Type of fishery		Ship size	Average number of nets per vessel	Average net size (L x H)		
Seine (encircling)		1, 11, 111	1	400x100		

- AQUACULTURE
- →Number of aquaculture companies
 →Size of fishing farms

Company	Cage type	Number	Perimeter (m)	Maximum Cage Depth (m)	Maximum area per net (m²)	Total area (m²)
#1	Pre- fattening	6	35	8	276	1659
	Fattening	14	63	17	1068	14954
#2	Fattening	12	80	10	800	9600

• AQUACULTURE

→Number of aquaculture companies
→ Size of fishing farms
→ Gear composition

Equipment	Composition		
Floating structures	HDPE, PVC		
Cables	Polyethylene, Polypropylene		
Nets	Polyethylene, Nylon		
D	Polyethylene, Polyurethane, Expanded		
Buoys	Polystyrene (filler)		

CONCLUSIONS

- \rightarrow Fisheries (seine and angling):
 - Nylon stock: 33.5 to 132.5 tons
 - 20 thousand buoys (Polyethylene, Polyurethane, Expanded Polystyrene (filling))
- \rightarrow Aquaculture:
 - Nets: 26200 m²
 - Associated components floating structures (polyethylene and PVC), cables and buoys

CONCLUSIONS

- → 4600 Kg of nylon entering the system (sold) per year
- → Same amount of nylon should be waste (inferred)
- → High economic valued material easier end of life management
- Costs of transportation from Madeira to mainland can be a limitating factor

CONCLUSIONS

- → Polyethylene and polypropylene
- Aquaculture equipment that include algaecide impregnating agents
- → Mixture of ALDFG collected on beaches
- → Low economic valued material
- Small waste amounts, from the industry perspective, generated each year

Will most likely constitute a charge for which compensation needs to be provided under a future EPR scheme

RECOMMENDATIONS (2021)

 \rightarrow Improve the knowledge on waste production

- Specific waste containers in fishing ports
- Periodic characterization and analysis
- Awareness raising among fishers
- → Establishment of EPR schemes
 - Improve data streams on imported and sold fishing gear \checkmark
- Development of high value chain for end of life fishing gear
 - Establish contacts with recycling companies
 - Develop local circular economy models 🖌

CURRENT/FUTURE WORKSTREAMS

Improve the knowledge on waste production
 Maintain the regional beach-litter monitoring program

10 sites 4 times/year Trends GES evaluation SUP/SEA analysis

CURRENT/FUTURE WORKSTREAMS

 \rightarrow Improve the knowledge on waste production

- Maintain the regional beach-litter monitoring program
- Regular beach clean-up program in accumulation sites

Annual contracts 10+ events/year >4 tons removed Activity likeliness analysis Increase location numbers

- CURRENT/FUTURE WORKSTREAMS
- \rightarrow Improve the knowledge on waste production
 - Maintain the regional beach-litter monitoring program
 - Regular beach clean-up program in accumulation sites
 - Fishing for Litter Schemes

gestión de espacios costeros protegidos en archipiélagos afectados por basuras marinas

10% of the fleet engaged (since 2022) End-of-life: 1000Kg Passively fished: 3000Kg Specific awareness raising activities

CURRENT/FUTURE WORKSTREAMS

\rightarrow Improve the knowledge

- Maintain the regional beach-litter monitoring program
- Regular beach clean-up program in accumulation sites
- Fishing for Litter Schemes
- Geographical source likeliness analisys

→ Circular economy models

- Study of leisure boat fisheries material flows
- Periodic characterization of regular waste streams
- Create data streams on imported and sold fishing gear
- Evaluate possible circular economy models

\rightarrow Awareness raising

Environmental Programs (Eco-schools, GreenKey, Blue Flag)

Secretaria Regional de Ambiente, Recursos Naturais e Alterações Climáticas Direção Regional do Ambiente e Alterações Climáticas

Global problems: coordinated efforts Importance of cooperation We must keep our efforts aligned...

Thank you 🕲

If you need any further clarification: pedro.sepulveda@madeira.gov.pt

Photo credits: Virgílio Gomes - DRAAC