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Development and improvement of 
monitoring methods for marine litter 
1. Introduction 

 
Importance 
Due to a rapid production of plastics since 1950s, there is an increasing concern about global pollution of 
plastic debris in the open oceans (Cózar et al., 2014). Around 60-64% of the terrestrial load of plastic to the 
sea is estimated to be transported to open-ocean waters, with the greatest concentration of floating debris 
being modelled in the subtropical ocean gyres (Maximenko, Hafner and Niiler, 2012; Lebreton, Greer and 
Borrero, 2012). In these areas, a high concentration of floating litter is visible using remote sensing. This was 
confirmed by a survey in the Great Pacific Garbage Patch which shows that polyethylene (PE) and 
polypropylene (PP) are the most common floating polymers (Lebreton et al., 2018). Despite floating plastics 
being visible on the sea surface, there is still a mis-match between the hydrocarbon load to the oceans and 
the amount of plastics found in the coastal areas and on the sea surface.  As such, it is estimated that there 
are sinks of plastic debris on the ocean floor. Similarly, this mis-match is caused by plastic debris being 
fragmented into particles <2.5 cm, commonly known as microplastics.  Microplastics can be ingested by a 
wide range of organisms, from small fish to large mammals and birds (Boerger et al., 2010; Choy and Drazen, 
2013; de Stephanis et al., 2013). There are various mechanical effects of plastics, for example gastrointestinal 
obstructions in seabirds (Azzarello and Van-Vleets, 1987) but also accumulation of chemical contaminants 
from plastics and sea water in the receiving organisms which can cause death (Teuten et al., 2009). Marine 
litter can also cause serious economic damage as losses for coastal communities, tourism, shipping and 
fishing. Fishing industry could equal to almost €60 million which is 1% of total revenues of the EU fishing fleet 
in 2010 (EU Commission, 2018) Due spatial and temporal variability of marine litter to threats plastics impose 
on environment and, it is important to develop effective methods for their frequent, repetitive and large 
scale monitoring in order to facilitate any cleaning activities and to better understand and map plastic 
hotpots. Estimating litter trends over time is needed for efficient monitoring programs, management and 
reduction measures (Galangi, Hanke and Maes, 2015). Several regional and global initiatives were launched 
such as OSPAR Regional Action Plan, G7/G20 Marine Litter Action Plan or UN Sustainable Development Goals 
which aim for an international litter management program (Maes, 2017). Pollution of the seas from plastics 
and microplastics is one the three major areas of the Strategy for Plastics that was adopted in January 2018 
by European Union Commission (EU Commission, 2018). Therefore, developing and improving methods of 
plastic litter hotspots identification will lead to improved litter management systems in the east Atlantic 
region and potentially worldwide. 
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2. Literature Review 

In the past five years, there has been numerous remote sensing techniques successfully utilised to map 
marine litter. Examples of these are using unmanned aerial vehicles (UAVs), cameras manned at the 
coast/beaches that can collect high resolution data for repeatable monitoring. Methods such as image 
classification or machine learning can yield successful results in automatic identification of litter targets and 
their classification. Although these methods prove to be successful, they do not provide an option for 
monitoring larger spatial scales. Aircraft surveys compensate fort this limitation of UAVs or fixed cameras, 
however, they are rather expensive, therefore cannot be used for repetitive monitoring. Freely available 
satellite data products from Copernicus or NASA have become a focus of research on identification of large 
spatial scale of plastic litter hotspots only recently. As Maximenko et al. (2016) and Moller et al. (2016) point 
out remote sensing imagery with moderate to high temporal, spectral and spatial resolution would enable 
explore distribution of floating marine plastic debris. In addition, Asner (2016) argues that spectroscopy does 
not require a high spectral or spatial resolution but a spectral library of marine debris which can be used to 
detect them remotely. Garaba and Dierssen (2018) show that marine harvested dry and wet macro/micro 
plastics have notable absorption dips at ~931, 1214, 1417 and 1732 nm which were tested in laboratory 
conditions using spectroradiometer (Figure 1). However, only 1214 and 1732 plastic absorption features were 
observed through atmosphere column. This can be explained by water absorption around 950 and 1400 nm 
wavelengths. Therefore 1215 and 1723 were used to calculate hydrocarbon index which maps out 
hydrocarbons in hyperspectral AVIRIS imagery in a landfill (Garaba and Dierssen, 2018). Similarly, Martinez-
Vincent et al. (2019) found out that multispectral data centred around 1732 nm is enough for a successful 
identification of litter on a sandy beach. Other authors such as Asner 2016 or Murphy et al. 2018 also prove 
that there are specific bands around NIR and SWIR where plastics have unique spectral signatures. 

 

Figure 1. Spectral signatures of harvested marine plastic debris (Garaba and Dierssen, 2018). 
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Despite laboratory experiments showing unique spectral signatures of plastics, detecting them using satellite 
data can be problematic. Preliminary results from Plastic Litter Project conducted in 2018 by the University 
of the Aegean show that the spectral signature of the plastics detected in Sentinel-2 pixels for clear plastic 
bottles, fishing nets and blue plastic bags vary depending on the percentage of the material covering the 
pixel. In other words, the bulk spectral signature of the pixel present in Sentinel-2 imagery is influenced by 
the background surface. Figure 1 shows plastics that covered at least ~34% of the pixel’s area undergo an 
increase in spectral reflectance in B08- 842 nm central wavelength and a significant absorption dip in B09- 
945nm. This is especially apparent for plastic bottles, with a weaker pattern for plastic bags and fishing nets 
which require at least 50% of pixel coverage to be detected (Topouzelis and Papakonstantinou, 2019). This 
can be explained by the radiative transfer balances of the radiation through thin plastic such as bags or nets. 
Overall Topouzelis and Papakonstantinou (2019) argue that Sentinel 2 data can be used to detect areas where 
the plastics covers at least half of the pixel spatial resolution and the marine plastics is observable from space 
even if submerged in the water.  

All these studies (summary Table 1) show that it is possible to detect high concentration of plastic marine 
litter from space using specific spectral signatures tested in laboratories and satellite data. However, none of 
the studies compared spectral signatures of macro-plastics to different cover types both across space and 
time. This is important to research in order to determine the range of macro-plastic spectral reflectance 
obtained from satellite data and its variation across time. This range can be compared to ranges of other 
cover types such as deep/shallow water, beaches, urban areas or vegetation to investigate whether it is 
possible to differentiate among different cover types and use this knowledge to create a method that 
automatically detects plastic litter hotspots. As such this, project determines spectral ranges of different 
cover types across time and assess whether it is possible to use the ranges in automatic litter identification. 
Furthermore, this study compares commercial high spatial resolution data from WV3 to freely available but 
coarser Sentinel data. The following are the specific aims the project is going to address. 

Aims of this project 
 The objectives of this project are to analyse, develop and improve monitoring methods of marine litter. In 
order to do that the following objectives are going to be answered:  

1. Assess feasibility of Sentinel 2 data in identifying plastic litter hotspots.  
2. What are the spectral ranges of polymers using Sentinel 2 data?  
3. Developing a method of plastic litter hotspots identification. 
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Table 1. Summary of the literature review on plastic litter using remote sensing. 

Author Findings 
Topouzelis and 
Papakonstantinou, 2019 

 Reflectance of polymers peaks in 842 nm (Sentinel 2 
data) 

 Macro-plastics is detectable from space if at least half 
of the pixels are covered by plastics 

Martinez-Vincent et al. 
2019 

 Multispectral data around specific wavelengths are 
enough to detect plastic litter 

  Reflectance peaks around 1732 nm 
Garaba and Dierssen 
2018 

 Absorption band depths of dry and wet macro/micro 
plastics at 1215 and 1732 nm (resemblance of raw 
polymers PP, LDPE, PET) 

 Hydrocarbon index- AVIRIS (landfill) 
 Problems with ground-truthing  

Murphy et al. 2018  model to detect floating debris (optical and geometric 
properties) 

 single (750nm) or dual (NIR and SWIR) band algorithm  
Asner, 2016  spectroscopy of polymers- does not require a high 

spatial resolution if spectral resolution is high- suggests  
 spectral library of marine debris is needed 

Guardado, 2015  Spectral fingerprints of 12 Plastic Resin Groups (SWIR 
&MIR)- multispectral library 

Moroni et al, 2015  PET and PVC absorption peaks (~1200 nm and 
~1600nm) 
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Figure 2. Reflectance of different plastic objects using Sentinel 2 data (Topouzelis and Papakonstantinou, 2019). 
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3. Methodology 

In order to answer the objectives, set in section 2.1., the following methodology was used: 

1. Identify study areas where plastic objects are static and at least 10 x 10 m wide. This needs to be 

done to ensure the certainty that the plastic objects that are observable from satellite images are 

polymers without ground-truthing (conducting a survey). Also, 10 x 10 m is the highest resolution 

from Sentinel 2, therefore the study areas need to depict large plastic objects.  

2. Download a timeseries of Sentinel 2 data. Ideally the time resolution was monthly, however, in case 

the cloud cover obstructed the view less frequent data was obtained. At least 12 data points were 

downloaded per study area to show a yearly variation. 

3. Apply atmospheric correction to convert top of the atmosphere reflectance (TAP) to bottom of the 

atmosphere (BOT) using Sen2Core library. 

4. Resample data to the same resolution (10 x 10 m), clip to a smaller study area. 

5. Identify surface cover objects using True colour (RGB), false composites and NDVI (Normalized 

Difference Vegetation Index). 

6. Calculate average spectral reflectance, NDVI and NDBI (Normalized Difference Build Index) of each 

object (Zonal Statistics in ArcGIS 10.5 version) across the timeseries and plot these.  

7. Determine the spectral ranges of each surface cover type. 

8. Use these ranges in automatic identification of macro-plastics. 

4. Study areas 

According to point 1 in Methodology section 3, three study areas were identified: 

Eden 
Eden Project was constructed in a former dredging area. Hexagonal pentagon domes were built made of 
tetrafluoroethylene copolymer (ETFE) material. ETFE is also so called ‘cling film with attitude’ since it 
transmits UV radiations, is non-stick, self- cleaning and lasts for more than 25 years. (Eden, 2019) (Figure 3) 
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Figure 3. Eden project case study. 

 

Thilafushi 
This so-called Litter Island in Maldives is an artificial island where most of the litter is accumulated from other 
surrounding islands in the Maldives archipelago. Recently, some boatmen have dumped rubbish into the 
surrounding lagoons due to a long waiting time to unload the litter and there are threats of litter falling into 
the sea (BBC, 2011). The main part of the landfill is around 200 x 200 m big and it has a continuous litter cover 
(Figures 4). 
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Figure 4. Thilafushi case study. 

 
Mytilene 
Plastic Litter Project conducted in 2018 by the University of the Aegean on 07/06/2018 composed of placing 
10x10m plastic objects- fishing nets, bags and bottles on the sea surface. Sentinel 1, 2, UAVs and other 
commercial satellites were used to identify these objects from the sea surface. (Marine Remote Sensing 
Group, 2019) (Figure 5). 
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Figure 5. Mytilene case study. 

 

5. Results 

Spectral Reflectance 
 

5.1.1. Plastic litter on land 

Synthetic hydrocarbon objects in Eden and Mytilene study areas show an overall increase in reflectance 
between 740-865 nm in near-infrared wavelength (Figures 6 - 9). These correspond to Sentinel 2 B06- 740 
nm, B07- 783 nm, B08- 842 nm and B08A- 865 nm central wavelengths. The reflectance peaks in B08 – 842 
nm with a sharp absorption drop in B09- 945 nm central wavelength. A considerable variation in reflectance 
is expected in vegetation as it changes seasonally and to a lower degree for urban areas- which is shown in 
Figure 6 and Appendix 1. Since Eden domes are static polymer objects they should not change seasonally, 
and a low variation in reflectance was expected.   Dates 19/12/2017 and 30/10/2018, however, depict a much 
higher reflectance than the rest of the data points. The reason for this fluctuation is unknown. Appendix 1 
shows minimum, maximum, mean, standard deviation and coefficient of variation for each surface cover 
type in Eden study area between April 2017 and January 2018. The lowest reflectance of plastic domes is in 
SWIR B12-2190 nm with the highest reflectance in B08 – 842 nm. Since B08 has almost twice bigger 
reflectance than B12, this project suggests using a difference between these two bands to map the presence 
of synthetic hydrocarbons. Bands B08 and B12 have very similar values for urban and water cover types, but 



 

Page  
 

13 

as in case of polymers, reflectance in agriculture and vegetation surfaces in B08 and B12 is almost twice 
bigger. Therefore, for land mapping of plastic litter, firstly vegetation will be removed using NDVI > than 0.5, 
as this is the minimum NDVI for healthy vegetation in Eden case study (Appendix 2). 

 

Figure 6. Spectral signature graphs for different cover types for Eden case study.  
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Figure 7. Spectral signature graphs for different cover types versus plastic bags.  
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Figure 8. Spectral signature graphs for different cover types versus plastic bottles. 
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Figure 9. Spectral signature graphs for different cover types versus fishing nets. 
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5.1.2. Plastic litter on the sea 

It was not possible to see the variations across time for plastic objects in Mytilene case study, since Sentinel 
2 data where the plastic objects were detectable were available only for 06/07/2018, and after this date the 
objects were removed from the water surface.  Despite it, this example is important as it provides an insight 
on the reflectance of plastics surrounded/submerged into water. The spectral reflectance graphs of plastic 
bags, bottles and fishing nets (Figure 7, 8, 9) show that these objects have very different shapes from urban, 
beach and vegetation cover types. This is not the case for plastics and water. Spectral reflectance of plastics 
coincides with shallow and deep-water reflectance, mainly in SWIR wavelengths, therefore floating plastic 
litter might be difficult to differentiate from water. Comparing reflectance of plastic bags, bottles and fishing 
nets (Figure 10), the spectral reflectance peaks in 842 nm (B08) and there and drop in reflectance by almost 
a half from 842 nm (B08) to 945 nm (B09). These drops in reflectance are present for plastic bags and nets 
too but they are not as pronounced as in case of bottles. This can be explained by plastic bags and nets being 
submerged into the water or different absorption properties of plastic types. Although B12 does not exhibit 
the lowest reflectance in Mytilene case study, B08 and B12 are going to be used to map plastic litter on the 
sea surface since it is not possible to draw conclusions on plastic reflectance from one instance in time.  
Therefore, Normalized Difference Index will be used to extract only water bodies from Sentinel 2 image and 
then B08-B12 difference will be applied and compared to NDBI.  

 

Figure 10. Average reflectance of plastic bottles, bags and nets in 2 pixels which represent these objects. 

 

5.1.3. Mixed plastic litter 

In real conditions, plastic litter will be diverse and mixed with other marine debris, which can result in high 
variation of reflectance. This is the case of Thilafushi landfill study area. Figure 11 shows that spectral 
reflectance graphs of three landfill objects do not rise considerably in B08, drop in B09 with a further decrease 
until B12 (SWIR) as it was present in Eden and Mytilene. In Thilafushi landfill, reflectance gradually increases 
and peaks in B11- 1610 nm central wavelength and then levels out/drops. There are no significant peaks or 
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troughs. Although the spectral reflectance graphs are very different between landfill and deep/shallow 
waters, they overlap in NIR with vegetation and urban cover types. Although the mapping method of using 
B8/B12 difference is applied to Thilafushi landfill in order to compare the study areas, the landfill does not 
exhibit any clear reflectance pattern in these bands.  

 

Figure 11. Spectral reflectance of different cover types for Thilfushi study area. 

Mapping plastic litter hotspots 
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Using the information from the spectral graph signatures on a sharp difference between B08 and B12 
reflectance for plastic litter, the following workflows are suggested for mapping plastic litter hotspots in areas 
on land and on the sea: 

 

Figure 12 illustrates true colour (RGB), areas left after healthy vegetation was removed and the B08 – B12 
differences in the remaining areas which are not classified as vegetation. The highest difference between 
bands B08 and B12 correspond to 2 domes that were digitised as plastic objects; hence this method can map 
out areas where the plastic objects cover substantial proportion of the Sentinel-2 pixels. This method also 
mapped out other objects which have high differences (orange circles). After conducting checks using google 
maps, these areas also appear to be synthetic hydrocarbons. However, fieldwork and ground-truthing still 
need to be conducted to confirm these. 

Using the same method to map synthetic hydrocarbons on water, however, seems to be rather problematic. 
As Figure 13 depicts, waterbodies were identified using NDWI and B08 – B12 difference was calculated. The 
results show that the difference of the two wavelengths is high in the pixels that correspond to plastic bags, 
nets and bottles, meaning that these objects were mapped successfully. However, across the area, there are 
multiple other pixels which show high differences such as objects near the beach (Figure 14 A), spit of land 
(Figure 14 B) and a ship (Figure 14 C). This can cause problems in automatic mapping of litter on the sea 
surface. However, the nature of these objects can be easily verified using true colour images for the ship and 
spit of land. It becomes more problematic for the pixels near the beaches (Figure 14 A), where it is difficult 
to determine what the high difference pixels represent even using high resolution 1.2 x 1.2 m WV3 data.  

The pattern that is observable in the Eden and Mytilene case study where B08-B12 difference can be used in 
an iterative process to classify pixels as plastics is not present in Thilafushi landfill. Since spectral signature 
graph (Figure 15) does not depict any clear pattern (pronounced peaks/troughs) this is also reflected in the 
B08 – B12 difference (Figure 9). In Figure 15, the high difference between the bands is in case of ships which 
was similar to Mytilene case study, but the landfill itself shows low differences between B08 and B12. Also, 
there are many other areas on the island itself which have high differences but are not synthetic 
hydrocarbons. This example shows that this method does not work when pixels are composed of diverse and 
mixed litter material. Also, it is not possible to determine what composition these landfills are without 
conducting fieldwork. As such, this method can distinguish areas of dense plastic objects, but it is not 
applicable in cases mixed litter.  
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Figure 12. Mapped plastics on land- Eden case study. 
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Figure 13. Mapped plastics on the sea surface- Mytilene case study. 
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Figure 14. Objects which show the highest difference using B8/B12 wavebands on the sea surface.
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Figure 15. Mapped plastics using B8/B12 approach in Thilafushi case study.
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6. Discussion 

Overall, spectral signatures of plastic objects investigated in this project show the maximum reflectance in 
NIR 842 nm and the lowest reflectance in SWIR B12 2190 nm. Similarly, these objects depict a gradual 
increase in reflectance in the NIR with a sharp drop in band B9.  Combined patterns from spectral graphs of 
Eden and Mytilene case studies are similar to reflectance graphs from Topouzelis and Papakonstantinou 
(2019). However, in case of this project emphasis was put on exploring spectral graphs of plastics across time 
and comparing them to other cover types, since it is difficult to draw conclusions on using reflectances from 
Sentinel-2 data from 1 point in time as it was in case of Topouzelis and Papakonstantinou (2019). As such, by 
looking at 25 monthly reflectance of plastic objects (24- Eden case study, 1 Mytilene), it is possible to argue 
that the pattern seen in the spectral graphs of plastic objects is not caused by chance.  

Thilafushi case study shows very different spectral signatures of the landfill compared to Eden and Mytilene.  
This is most likely caused by diverse rubbish present (not only plastics) at the landfill which is impossible to 
identify without conducting a fieldwork. As Topouzelis and Papakonstantinou (2019) point out, the 
percentage of specific cover type constituting individual pixels in satellite data influence the overall bulk 
reflectance. Therefore, the more mixed and diverse the cover type is, the more varied the reflectance 
becomes. However, this does not seem to be the case for wavebands 1215 and 1732 nm that Garaba and 
Dierssen (2018) used to calculate hydrocarbon index of a landfill containing lots of polymers from 
hyperspectral data. Similarly, Martinez-Vincent et al. (2019) used 1732 nm to detect plastic objects on the 
beach. Sentinel 2 does not contain these specific wavebands, hence spectral graphs do not show any 
conclusive pattern for these cover types. 

Using knowledge from spectral graphs of plastic litter, this project proposes workflows for automatic 
identification of litter based on Sentinel-2 data. Since, band 8 shows the peak and band 12 the trough, these 
two bands are utilised to compute a relative difference where the higher the difference, the more likely the 
pixel can be considered to contain plastics. This approach works for Eden case study, where not only the 
plastic domes show the highest difference, but also other objects which are believed to be plastics using 
verification from google maps. Ideally, this will be proved by visiting the site. Applying this method on the 
sea surface classifies plastic bottles, nets and bags, however, there are also false positives- pixels with high 
differences which are not plastics but ships or spit of land. These false positives can be ruled out using true 
colour images though. In terms of Thilafushi case study, this method does not successfully detect landfill at 
all which might be down to its mixed composition.  As such, Sentinel 2 data can be used to detect plastic litter 
(objects) from space in an automatic way, but it fails when the composition of the pixels are not pure plastics. 
Although plastics account for almost 99.9% of floating debris, there can be other material together with 
biofouling which can change the spectral reflectance of individual pixels depending on what percentage of 
the pixel surface area they cover. Consequently, more fieldwork where cover type with more realistic 
conditions set-up will be (mixed debris with plant material) is needed to be conducted. This is especially 
important due to ground-truthing of remote sensing data.  
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7. Conclusion 

This study assesses freely available Sentinel 2 data in terms of automatic identification of plastic litter 
hotspots. Both Eden and Mytilene case studies show specific patterns of spectral signature graphs, peaking 
at 842 nm (B8) with a sharp drop in 945 nm (B9) and the lowest reflectance at 2190 nm (B12). Thilafushi 
landfill did not show the same pattern due to mixed composition of litter. It is possible to use high differences 
between B8 and B12 to map out areas where the plastics are present on land and see, as long as the majority 
of the pixel is composed of polymers. If this is not the case, the B8/B12 difference cannot map out plastics, 
which was shown in Thilafushi landfill composed of diverse material. More fieldwork and experiments using 
remote sensing data with ground-truthing is needed to test large areas covered with diverse litter mixed with 
organic material. 

8. Recommendations and future work 

Following from the findings of the project, these are the recommendations for the future work: 

1. Test other study areas where plastic objects area static (we know that particular pixels are covered 
in polymers without ground-truthing) or conduct fieldwork and look at the spectral signature graphs 
of these objects. 
 

2. Maximum likelihood classification (or other image classification method-object oriented) of WV3 for 
Mytilene case study. Compare the results to Sentinel 2 data for 06/07/2018 to see how higher spatial 
resolution can improve image classification.  
 

3. Explore SWIR wavebands from WV3- in particular SWIR 1 which corresponds to 1215 nm and SWIR 
4- 1730 nm that were used by Garaba and Dierssen (2018) and Martinez-Vincent et al. (2019) to 
successfully identify polymers.  
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10. Appendix 

Appendix 1:  

Eden study area 
Cover type Urban Vegetation Water 
Band B8 B9 B12 B8 B9 B12 B8 B9 B12 
Min 0.008 0.091 0.099 0.202 0.219 0.06 0.008 0.091 0.014 
Max 0.595 0.472 0.23 0.455 0.472 0.106 0.075 0.181 0.06 
Mean 0.275 0.28 0.182 0.34 0.367 0.075 0.03 0.153 0.024 
STD 0.143 0.089 0.04 0.089 0.086 0.015 0.019 0.03 0.12 

Coefficient of 
variation 0.52 0.317 0.229 0.262 0.234 0.199 0.625 0.197 0.522 

Eden study area 
Cover type Agriculture Dome 1 Dome 2 
Band B8 B9 B12 B8 B9 B12 B8 B9 B12 
Min 0.148 0.155 0.052 0.314 0.238 0.152 0.282 0.248 0.149 
Max 0.475 0.469 0.233 0.595 0.328 0.307 0.551 0.332 0.233 
Mean 0.29 0.306 0.137 0.393 0.295 0.193 0.352 0.285 0.177 
STD 0.114 0.11 0.067 0.092 0.029 0.047 0.083 0.0285 0.025 

Coefficient of 
variation 0.393 0.36 0.492 0.236 0.099 0.248 0.237 0.1 0.144 
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Appendix 2: 
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